
Main page
About
Recent changes

Search

AVR RFID — Trammell Hudson's Projects

From Trammell Hudson's Projects

I was inspired by Beth’s avrfid.S (http://scanlime.org/2010/06/avrfid-
1-1-firmware/) project to try to build a replacement for the multiple
HID Prox cards that I carry for work. Her design is simultaneously a
technical tour-de-force and an example of how badly we can abuse
the Atmel chips. Here is the entire schematic:

There is no connection to power and ground: the chip is powered

https://trmm.net/Main_Page
https://trmm.net/About
https://trmm.net/Special:RecentChanges
https://trmm.net/AVR_RFID
https://trmm.net/Main_Page
https://www.flickr.com/photos/osr/8276700812/lightbox
http://scanlime.org/2010/06/avrfid-1-1-firmware/

There is no connection to power and ground: the chip is powered
through leakage current from the input pins. The AC waveform is
fed directly into the pins: the internal protection diodes rectify it.
During negative parts of the wave the silicon die’s inherent
capacitance maintains state. The CPU clock is driven by the AC as
well and depends on the ability of the coil to drive more current
than the chip when DDRB is configured to pull the pins to the same
potential. It's truly amazing that this works at all.

The firmware she wrote in macro assembler is easy to understand
and straight-foward, but filled the entire 8 KB flash on the ATTiny85
when compiled for HID Prox cards. Unlike the CW modulated
EM41xx cards that just load the coil for thirty RF cycles to send a
baseband one and don't load the coil to send a baseband zero, the
HID cards use Frequency Shift Keying (FSK) modulation. In FSK a
baseband zero is sent by cycling the load on the coil for 50 cycles at
a frequency of 4 RF cycles, and a baseband one is sent by cycling the
load every 5 RF cycles. Beth's code loads the coil by setting the two
bits in DDRB to 1 while holding PORTB at 0, which places a short across
the coil by putting both ends at the same potential.

While it turns out that my dream of automatically selecting the right
RFID card doesn't work, here are details of how to build your own
HID compatible RFID devices and some overview of the hand-tuned
assembly necessary to fit the RFID timing.

Contents

https://www.flickr.com/photos/osr/8276682872/lightbox
http://en.wikipedia.org/wiki/Frequency-shift_keying

1 Card format
2 Instruction timing
3 The state machine
4 Flashing the RFID
5 Testing the RFID
6 Updates

Card format
It turns out that the HID cards always send the same total number of
bits regardless of the card format -- the bit stream always starts with
seven 0s, a 1, some number of 0s to pad the overall length to 45 bits,
and another 1 to indicate the of the header. (Thanks to Technologia
Incognita (http://techinc.nl/) for this insight) For a sample 26-bit and
35-bit card, the bits consist of a header, the card type, one or two
parity bits, some number of bits for the facility code, finally the bits
of the ID number and another parity bit. The card reader doesn't
output the first two portions of this, so you need to add the padding
yourself.

26-bit Prox card format:
 00000001-00000000001-0-00101010-0101110110001010-0
 |-Head-| |-Padding-| P |Faclty| |--- ID Code --| P
 |--- Not output ---| |---- Output by reader -----|

35-bit "Corporate 1000" card format:
 00000001-01-11-100001001000-00011100001100100101-0
 |-Head-| LL PP |-Facility-| |--- ID Code ------| P
 |No output| |--------- Output by reader ---------|

The equivalent lengths of the bitstreams is clear. This likely is done
for market segmentation to allow HID to sell the different card
lengths at different prices, but save money by only having one
actual card format.

Instruction timing

 One issue with

programming HID Prox compatible cards is that the AVR’s RCALL and
RET instructions are quite slow -- 3 and 4 clocks respectively
(http://www.atmel.com/images/doc0856.pdf) -- so making a function
call and returning from it requires seven clocks and would cause

http://techinc.nl/
http://www.atmel.com/images/doc0856.pdf

call and returning from it requires seven clocks and would cause
errors in the RF waveform. To get around this, Beth expanded all of
the code inline to produce a single function that bit-bangs the coil
loading with NOP's between each cycle. The 19-bit manufacturer ID
(0x0801), 8-bit faciity code, 16-bit unique ID and two parity bits, all
Manchester encoded, required 80 instructions per bit for a total of
3700 instructions out of the Tiny85's maximum of 4096. Supporting
34-bit cards would not be possible with this design, much less
multiple card IDs!

While RCALL/RET are out of the question, I noticed that IJMP is only 2
clocks. This means that the CPU can do an indirect jump to the value
in the 16-bit Z register in enough time to be ready for the next FSK
cycle. If we know where to go, that is... The LPM instruction takes
three cycles to read a byte from flash into a register, which just
barely fits during the idle time during a FSK baseband one. Loading
the Z register for LPM takes at least two clocks (since it is really the
two 8-bit registers r31:r30), which means the pgm_read_word() macro
in avr/progmem.h (http://www.nongnu.org/avr-libc/user-
manual/group__avr__pgmspace.html) won't work. While the rest of
the firmware is in mostly normal C, I resorted to writing assembly to
interleave the coil toggling with the operations to determine the
next output state and make the appropriate jump. If you want to
follow along, the source for the RFID firmware is available in
rfid/avrfid2.c
(https://bitbucket.org/hudson/rfid/src/0ef4c3636f0a/avrfid2.c?
at=default).

The state machine
The card IDs are stored in a flash memory character array where
the ASCII characters encode the states. 2 is the state that sends the
HID header, state 3 is to jump back to the start, and states 0 and 1
send a zero or one. For one of my test cards, the array definition
looks like this (with __used__ to indicate to gcc that this array must
be present, even if it does not see any usage of it):
static const char hid_bits[]
PROGMEM __attribute__((__used__)) =
{
 HID_HEADER
 "0000000100000000001" // HID code 0x0801 for 26-bit cards

http://en.wikipedia.org/wiki/Manchester_code
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html
https://bitbucket.org/hudson/rfid/src/0ef4c3636f0a/avrfid2.c?at=default

 "0" // first party bit
 "00101010" // Site code 42
 "0101110110001010" // ID 23946
 "0" // second parity bit
 HID_RESET
};

Or for 35-bit Corporate Cards:
static const char hid_bits[]
PROGMEM __attribute__((__used__)) =
{
 HID_HEADER
 "0000000101" // 35 bit cards use header 0x05, with 10 bits
// read from card 11-100001001000-00011100001100100101-0
 "11" // 2 parity bits
 "100001001000" // fc=2120, 12 bits
 "00011100001100100101" // id=115493, 20 bits
 "0" // 1 parity bit
 HID_RESET
};

The code to send a baseband one looks roughly like this, with the
FSK generation interleaved with reading the next state from the
hid_bits[] array and then looking up the function to call from the
state_handlers[]. At the end of the function, the Z register holds the
function pointer to be called next. The toggle macro takes two clocks
and turns the load on the coil if it is currently unloaded, or turns it
off if it is currently on. This leaves three clocks to do before the next
toggle. Most of the instructions are single cycle, except for LPM which
is three clocks, and RJMP .+0 which is a two clock NOP.
baseband1:
 toggle /* 5 */
 ldi r30, lo8(hid_bits)
 ldi r31, hi8(hid_bits)
 add r30, r15 // bit_num
 toggle /* 10 */
 lpm r24, Z // next_bit = lpm(hid_bits[bitnum])
 toggle /* 15 */
 ldi r30, lo8(state_handlers)
 ldi r31, hi8(state_handlers)
 nop
 toggle /* 20 */
 subi r24, '0'
 lsl r24
 add r30, r24 // z = &state_handlers[next_bit - '0']
 toggle /* 25 */
 lpm r24, Z+
 toggle /* 30 */
 lpm r31, Z
 toggle /* 35 */
 mov r30, r24 // z = lpm(z);
 rjmp .+0
 toggle /* 40 */
 inc r15 // bit_num++
 rjmp .+0
 toggle /* 45 */
 nop // Nothing to do!
 rjmp .+0
 toggle /* 50 */
 /* Leave last delay slot free */

Flashing the RFID

Once the fuse bits have been configured to use the RF waveform as
the clock source the chip will no longer be programable with a
normal AVR ISP. One option is to use Dangerous Prototypes'
buspirate (http://dangerousprototypes.com/docs/Bus_Pirate), which
can provide a "recovery" clock during programming. Unfortunately
it didn't work for me with the current release of avrdude; I had to
make the following patches to the avrdude/buspirate.c
(http://dangerousprototypes.com/forum/viewtopic.php?f=41&t=4922)
source to get it to work. The pinout to connect the Tiny85 to the
buspirate:
 +-------+
 White/white Reset |1 v 8| Vcc Red
 Blue/Blue Xtal1 |2 7| SCK Purple/green
 Xtal2 |3 6| MISO Black/Black
 Black Gnd |4 5| MOSI Gray/Yellow
 +-------+

Testing the RFID

To better test my design, I needed a way to read the HID cards.

https://www.flickr.com/photos/osr/8300599589/lightbox
http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/forum/viewtopic.php?f=41&t=4922
https://www.flickr.com/photos/osr/8300684885/lightbox

To better test my design, I needed a way to read the HID cards.
Unfortunately the commonly available RFID readers from sparkfun
(https://www.sparkfun.com/categories/144) and adafruit
(http://www.adafruit.com/category/55) only read EM4xxx cards, not
the HID Proxcard modulation. So I acquired a surplus HID ProxPro
II and built a small adapter with a Teensy 2.0. The output of the
device is an odd format -- Wiegand transmits zeros on one wire and
ones on the other -- so it required adapting to connect to a normal
computer. My rfid/hid-rfid-reader.c
(https://bitbucket.org/hudson/rfid/src/tip/hid-rfid-reader.c?
at=default) program translates this into an easy to parse serial
output. Each output line is a complete read of a card in ASCII
formatted binary.

If you wanted to try to modify the firmware of the reader, you're out
of luck. There are no user servicable parts inside -- the entirety of
the body is filled with potting compound epoxy. If you're interested
in lower level details and compatibility with multiple card formats,
the proxmark3
(http://code.google.com/p/proxmark3/wiki/HomePage) is a better
device for further hacking.

Unfortunately it turns out that my dream of cycling through
multiple IDs won't work with the way HID Prox readers report their
results. They seem to query the card continuously until they receive
two identical reads of the ID, then they stop probing until the reader
detects that the card has left the field. This means that cycling
continuously between IDs will cause it to never read any of them,
and cycling between two repeats of each cards will cause it to stop
reading after the first duplicate read succeeds. There are enough

https://www.sparkfun.com/categories/144
http://www.adafruit.com/category/55
https://bitbucket.org/hudson/rfid/src/tip/hid-rfid-reader.c?at=default
https://www.flickr.com/photos/osr/8301654636/lightbox
http://code.google.com/p/proxmark3/wiki/HomePage

reading after the first duplicate read succeeds. There are enough
pins on the Tiny85 (or even the microscopic Tiny10) and plenty of
space left if I wanted to add a switch to select between different IDs,
but this would require me to remove the device from my pocket,
which would somewhat defeat the purpose of the multipass.

Oh well... It was a mostly successful and very fun project, and an
exciting challenge to fit everything in such a small device. Thanks so
much to Beth for the source code and documentation on the various
protocols.

Updates

I've tried to make a PCB mount version that uses a long trace as the
coil. It generates plenty of voltage, but for some reason that AVR
isn't able to signal back to the reader. I tried to make the avr fit
inside the board, but messed up the instructions to OSHpark so it

https://trmm.net/ATtiny10
https://www.flickr.com/photos/osr/8276683178/lightbox
https://www.flickr.com/photos/osr/14025624875/lightbox

isn't able to signal back to the reader. I tried to make the avr fit
inside the board, but messed up the instructions to OSHpark so it
requires some cable hacking to program.

The C version original described only supported classic 26-bit cards,
but I recently needed to support the "secure" HID Corporate 1000 35-
bit format. The above text has been updated to reflect these changes.

Based on Daniel Smith's writeup on the format
(http://www.pagemac.com/azure/data_formats.php) and some
digging around, I figured out that the MFG_CODE for this format is 10-
bits long with the value 0x005. He also pointed out that the 26-bit
firmware had the wrong code -- it is not the 20-bit code 0x01002, but
is instead the 19-bit code 0x0801 and the bottom bit is part of the
parity computation for the card id. If you're using a HID branded
Proxcard reader, the value that it outputs is the entire data portion,
including all of the parity bits, but does not include the MFC_CODE
part.

I've updated my firmware
(https://bitbucket.org/hudson/rfid/commits/1636e2adcbc5ef663dc7ae3dfeb4105fed24e4d6)
with these changes and it works great. Emulating a 35-bit card takes
846 bytes of flash (nine more than the 26-bit cards since the state
machine stores one bit per byte), so it might be possible to port this
to the attiny10. I've also found that the tags work much better with a
small capacitor across the two clock pins, as shown in the above
photo.

(Originally posted to the NYCR Blog, "AVRFID Mutlipass"

http://www.pagemac.com/azure/data_formats.php
https://www.flickr.com/photos/osr/10916018656/lightbox
https://bitbucket.org/hudson/rfid/commits/1636e2adcbc5ef663dc7ae3dfeb4105fed24e4d6
http://www.nycresistor.com/2012/12/27/rfid-multipass/

(Originally posted to the NYCR Blog, "AVRFID Mutlipass"
(http://www.nycresistor.com/2012/12/27/rfid-multipass/)) and "extending the
firmware to support 35-bit Corporate 1000 cards"
(http://www.nycresistor.com/2013/11/18/avrfid-35-bit-support/)

Retrieved from "https://trmm.net/index.php?
title=AVR_RFID&oldid=1835"
Categories: Repost Hacks AVR RFID 2012

Views

Page
Discussion
View source
History

Personal tools

Log in

Tools

What links here
Related changes
Special pages
Printable version
Permanent link

Trammell Hudson's Projects
MistyLook for WordPress originally by Sadish Bala

This page was last modified on 21 November 2014, at 15:57.

http://www.nycresistor.com/2012/12/27/rfid-multipass/
http://www.nycresistor.com/2013/11/18/avrfid-35-bit-support/
https://trmm.net/index.php?title=AVR_RFID&oldid=1835
https://trmm.net/Special:Categories
https://trmm.net/Category:Repost
https://trmm.net/Category:Hacks
https://trmm.net/index.php?title=Category:AVR&action=edit&redlink=1
https://trmm.net/index.php?title=Category:RFID&action=edit&redlink=1
https://trmm.net/Category:2012
https://trmm.net/AVR_RFID
https://trmm.net/index.php?title=Talk:AVR_RFID&action=edit&redlink=1
https://trmm.net/index.php?title=AVR_RFID&action=edit
https://trmm.net/index.php?title=AVR_RFID&action=history
https://trmm.net/index.php?title=Special:UserLogin&returnto=AVR+RFID
https://trmm.net/Special:WhatLinksHere/AVR_RFID
https://trmm.net/Special:RecentChangesLinked/AVR_RFID
https://trmm.net/Special:SpecialPages
https://trmm.net/index.php?title=AVR_RFID&printable=yes
https://trmm.net/index.php?title=AVR_RFID&oldid=1835
http://wpthemes.info/misty-look/

